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Abstract—Low-resolution unconstrained face recognition is one
of the most active research areas in computer vision. Deep
learning models trained on high-resolution face images produce
significant accuracy. However, the performance degrades when
applied to unconstrained low-resolution faces because facial
features have extremely low visual information due to blurred,
occluded, and varying lighting conditions in the images. In the
face identification scenario, a probe face is matched with a list
of gallery faces. At Rank-1, if both probe and gallery face
pertains to the same identity, then it is a correct match. But
if the most similar face in the gallery that matches the probe
pertains to a different identity, can result in misidentification.
These similar-looking faces are referred to as lookalike faces.
This paper proposes a deep learning framework that minimizes
the misidentification problem caused due to the lookalike faces
and enhances the identification accuracy at top ranks. In our
framework, we extract the deep features from the unconstrained
tiny faces using deep convolution neural networks (DCNN),
aggregate the features into a fixed-length feature vector then
applies the subspace learning methodology and uses absolute
cosine similarity metric to produce an outstanding performance
for matching the identities in the embedding space. Exhaustive
quantitative experimental analysis on the open-source TinyFace
dataset shows better Rank-1, Rank-20 and Rank-50 accuracy
than the state-of-the-art methods.

I. INTRODUCTION

Unconstrained low-resolution face recognition is still evolv-
ing due to intra/inter variations on the pose, occlusion, and
illumination. In the case of face recognition in low-resolution
images, which are very tiny in size (usually 32 x 32) [1],
extracted features contain low inter-class variations, making
it a highly challenging identification task. Due to very less
variations in extracted features; thereby we see the challenge
of lookalike disambiguation [2].

Face detection is a vital stage in face recognition. Deep
neural networks have demonstrated robust performance in
many computer vision tasks such as object detection [3],
object segmentation [4], and face recognition [5], [6], [7].
Using the power of deep neural networks, we can extract in-
depth features from the faces, which have enough variations
to recognize the person. The speed of the face detector is
still a bottleneck for face recognition in the images. Single-
shot multi-box face detector (SSD) [8], and You only look
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once (YOLO) [9] are faster enough for face detection but not
efficient for capturing the faces at multiple scales.

Deep learning feature-based algorithms have outperformed
the handcrafted feature-based algorithms. In deep convolu-
tion neural networks (DCNN), initial layers extract lower-
level features (e.g., edge, corner, line etc.). In contrast, deep
layers extract the face’s global features (e.g., eyes, nose etc.).
Receptive fields also play a vital role in extracting the features
in the deep learning algorithms. Convolution features at deep
layers tend to have large receptive fields for extracting the
global features, while small receptive fields at initial layers are
responsible for extracting the lower level features [10]. Feature
aggregation is a crucial part of face recognition algorithms.
Many deep learning algorithms are proposed to extract the
features, but the efficient one is that it can produce the fixed-
length facial feature vector with enough variation. Schroff
extitet al. [7] proposed the deep convolution neural networks
with triplet loss for generating a 128 byte dimensional vector
of fixed-length embedding of the face [7].

Data is the most crucial part of deep learning-based al-
gorithms. The accuracy of deep learning-based approaches
depends on the amount of data used to train the parameters
of a model. Contrary to the previous approaches, manifolds
and subspace learning have also achieved a lot of attention
for image-based face recognition [11], [12]. In subspace
learning-based methods, a set of image samples is used as
manifolds or subspace and, an appropriate subspace similarity
metric is used for the identification (1:N) or verification
(1:1). The main advantage of the subspace based methods
is that instead of mean, subspace representations encode the
correlation information well among the samples. The subspace
produced by the correlation of the face embedding space will
learn a representation to capture the variations efficiently.
Despite the remarkable progress in face recognition using
subspace projection, majority of the prior works’ efficacy
degrades under unconstrained tiny face recognition. Therefore,
this paper proposes a method for look-alike disambiguation
via absolute cosine similarity for unconstrained tiny faces.
Experimental analysis on a public database shows the efficacy
of the proposed methodology.



The remainder of the article is organized as below. Section
II presents an overview of the prior works on face recognition
and identification. The proposed tiny face identification frame-
work is outlined in Section III. Dataset and experimental pro-
tocol are discussed in Section IV. Experiments are discussed
in Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

Turk and Pentland [13] proposed the face recognition model
using the principal component analysis approach. Parkhi et
al. [14] proposed a very deep convolution neural networks
(CNNs) using the VGGNet for face verification. Peiyun et
al. [10] proposed the convolution neural network for detecting
the TinyFaces in the image. Schroff et al. [7] proposed the
deep convolution neural networks, which uses the triplet loss
and margin parameter for training the network and generates
the 128 byte dimension vector for better face recognition
in images having pose and illumination. Lamba er al. [15]
proposed a study on the look-alike faces where the faces of
different identities look the same, which is a severe problem
in face recognition. Sun et al. [16] achieved impressive results
on the LFW (Labeled Faces in the Wild) dataset [17] by
minimizing the intra variations and maximizing the inter vari-
ations among the classes. Ding et al. [18] proposed the trunk
branch ensemble convolution neural network for recognition
of human faces in the video when there is a severe problem
of blurriness and pose conditions. Sun et al. [19] proposed the
high-performance deep convolution network by increasing the
dimension of hidden representations and adding supervision
to early convolution layers. Zheng er al. [20] proposed the
automatic system for face recognition in the video using the
deep convolution neural network and subspace to subspace
learning. Ren et al. [3] proposed the faster R-CNN algorithm,
which uses the concept of region segmentation for object
detection. Praveen and Nain [21] introduced the multi-scale
patch GAN for generating the photo-realistic images with
preserve identity. Martinez-Diaz, Yoanna and Méndez [22]
made a comparative study of very deep to the lightweight
deep learning networks. Experiments show an impressive
improvement in the results using lightweight networks that
are easy to deploy in resource-constraint environments. The
Meta Face Recognition (MFR) method was proposed to handle
face recognition in unseen domains without updating the
model [23]. Changer al. [24] proposed the idea of data
uncertainty learning using mean and variance. Zangeneh et
al. [25] proposed a two-branch deep convolutional neural
network architecture for mapping of high-resolution(HR) and
low-resolution(LR) images into a common subspace with non-
linear transformations.

Zhang et al. [26] proposed the Multi-task Cascaded Convo-
Iution Networks (MTCNN) for detecting the face at multiple
scales in the image. Deng et al. [27] proposed the additive
angular margin loss in face recognition. When classes are
compact enough, the angular margin in the loss, can better
classify the classes, which increases the discriminative power
of the classification. Chen et al. [28] proposed the model

based on a deep convolution network which learns the Deep
IDentification-verification features and achieved 99.15% face
verification accuracy on the challenging LFW dataset [17].
Wen et al. [29] invented the idea of training convolution
neural networks (CNNs) using a new supervision signal called
center loss instead of the Softmax loss function, which is used
widely in training. Liu et al. [30] proposed the angular softmax
(A-Softmax) loss function to learn the angular discriminative
features by the convolution neural networks (CNNs).

III. PROPOSED UNCONSTRAINED TINY FACE
RECOGNITION METHOD

There are four major stages in our proposed model, as
shown in Fig. 1. The first stage extracts the deep features
from the image, passing it through a deep convolution neural
network (DCNN). The second stage creates an embedding
space from the deep features. The third stage learns the
subspace similarity using the principal component analysis
(PCA) for a unique representation of identity in the subspace.
The final stage uses an appropriate subspace similarity metric
for discriminating identities in the subspace. The following
sections detail the method.

A. Feature extraction

Deep Convolution Neural Networks (DCNNs): Deep
convolution neural network, as shown in Fig. 1 is used to
extract the features from the tiny images that produce the face
embedding of size 512—byte dimensional vector. Let I be
the image and ¢(I,) € RP be the embedding generated after
applying the function ¢ — I,: y, which embeds the image
I, into a D dimensional embedding space.

y = o(ls) D

Here I, is the resized (up-sampled) image, passed through
the deep convolution network function ¢ that produces an
embedding (y) of 512 byte (D) dimensional vector.

B. Fusion of features

The next critical task is to fuse the embeddings of an identity
into a fixed size or uniform representation. Finding the mean
of the embeddings is the most common method to fuse the
embeddings. In our methodology, we extract the embeddings
from the different tiny faces of a person and produce an em-
bedding matrix. Subspace learning is applied to the embedding
matrix using the principal component analysis (PCA). The
eigenvector of the highest variance is chosen to represent the
identity in the embedding space. In the experimental analysis,
we have compared the result of the feature fusion approach
using the mean embeddings and subspace learning using the
PCA methodology.
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C. Subspace learning from embedding features:

Let Y € RP*™ be the embedding matrix, where D denotes
the dimensionality of the features and n denotes the number of
samples of the images from which deep features are extracted
using DCNN. Y,, represents the mean of the embeddings and
X: mean centred matrix of the embeddings.
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The covariance embedding space X X7 € RP*P generates
the orthonormal bases P = {Py, Py, P3,--- , Pp} where the
dimension of each principal component is D. In TinyFace
dataset [31] probe and gallery sets contain the unequal number
of images of the identities (n = 1,2, 3, ....). Due to this reason
the projected data contains the different number of features for
each identity.

Exploiting the above information, we select the principal
component of the highest variance as a unique representative
of the identity in the embedding space. The embedding space
created using the different tiny faces of the same identity has
enough feature variations.

D. Similarity metric

Absolute Cosine Similarity: Let P, € RP*! and P, €
RP>*1 are the two principal components of the two subspaces
S1 and Ss and @ is the angle between P; and P» where 6 lies
in the range of 0 < 6 < 90° then the absolute cosine similarity
can be defined as:
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A deep learning pipeline framework for unconstrained low resolution tiny face recognition.

IV. DATASET AND EXPERIMENTAL PROTOCOLS
A. Synthetic data generation

For generating the synthetic data for low-resolution face
recognition, we have used the CASIA-WebFace dataset [32].
In this approach, we first down-sample the high-resolution
(HR) original image (112 x 112) to the size of 7 x 7 and
then up-sample it to the original size, which produces the
low-resolution image. To capture the different degradations
available in the real world, we down-sample the image to the
sizes of 14 x 14, 28 x 28 and 56 x 56, then up-sample them to
the original size. This process produces low-resolution images
at different scales.

Original
HR image 14 x 14 28 x 28 56 x 56

Fig. 2. An example of synthetically generated low resolution (LR) face images
using Area interpolation.

From Fig. 2, it is noticeable that Area interpolation degrades
the spatial resolution of the image. To simulate the real
world degradation processes, different scales are applied to
the image.

B. Dataset details

We have trained our model on the CASIA-WebFace syn-
thetically generated images as shown in Fig. 2 and evaluated
the identification results on the TinyFace dataset [31]. The
Open-source TinyFace dataset implements the open-set face
recognition protocol for train and test sets generation, which
means there is no identity overlapping in train and test sets.
In TinyFace dataset, there are 5139 labelled facial identities
defined by 169403 native low resolution (LR) images (average
size 20 x 16) for face recognition. The TinyFace dataset is split
into train and test sets, where the train set consists of 2570
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Fig. 3. An example of native low resolution unconstrained images from
TinyFace dataset [31].

identities with 7804 images. The test set is further divided
into probe, gallery and distractor sets. In the gallery, there
are 4443 images having 2569 identities, while in the probe,
there are 3728 images having 2569 identities. The rest of the
identities images are present in the distractor set. Some of
the images being unlabelled in the distractor set, we have not
considered them in our experiment. In the TinyFace dataset,
images are captured under unconstrained viewing conditions
in pose, occlusion, and varying illumination. A sample of the
TinyFace dataset is shown in Fig. 3.

C. Implementation details

We have performed our experiments using the ResNet-100
model as a backbone network. The ResNet-100 model
contains the property of skip connections that avoids the
gradient vanishing problem in deeper networks. During
training of the model, An embedding size of 512, Stochastic
gradient descent (SGD) optimizer with a weight decay of
5e~* and an initial learning rate of 0.1 is used to train the
network. We have employed ArcFace loss [27] function to
train the model. The learning rate of our model decreases after
3k and bk iterations, as depicted in Fig. 4. After training our
model on CASIA-WebFace synthetically generated images,
we have finetuned (FT) it on TinyFace train set.

V. EXPERIMENT’S RESULTS

A. Comparison with existing face recognition algorithms

TABLE I
GENERIC FACE RECOGNITION (FR) EVALUATION ON TINYFACE [31]

Metric % | Rank-1 | Rank-20 | Rank-50
DeepID2 [28] 17.4 25.2 28.3
SphereFace [30] 223 35.5 40.5
VggFace [14] 30.4 40.4 42.7
CenterFace [29] 32.1 44.5 48.5
ShuffleFacenet [22] 43.1 58.9 64.5
ResNet-100FT(Ours) | 391 [ 569 | 63.0

As listed in Table I, our model has better Rank-1, Rank-
20, and Rank-50 accuracy compared to the state-of-the-art
methods like DeepID2 [28], SphereFace [30], VggFace [14]
and CenterFace [29] but less than ShuffleFacenet [22].

B. Loss graph

25 4 ArcFace loss (s = 32.0, m = 0.5)

20 1

Loss

10 4

4000 6000 8000

Number of iterations

0 2000

Fig. 4. Training loss of our model decreases as learning rate changes.

In the feature space, even when the classes face the problem
of lookalike, absolute cosine similarity separates them well,
and principal components can distinctly represent the classes
with well-defined distributions in the feature space. At Rank-
20 and Rank-50, in the feature space classes are distributed
so perfectly that there are minimum number of false matches
because the match value lies within the range of the rank
value, which increases the Rank-20 and Rank-50 accuracy
significantly and the metric function can find the correct match
within the specified rank in the embedding space.

C. Effect of cosine similarity

From Fig. 5, it is observed that the principal components
of the same identities lies either in the range of 0° — 37°
(58.72%) or in 151.4° — 175.6° (41.28%) using the cosine
similarity metric.

D. Effect of absolute cosine similarity

From Fig. 6, it is evident that using the absolute cosine
similarity, the angle between all the principal components
of the same identities lies in the range of 0° — 37°
(58.72%+41.28%), emphasizing a strong degree of similarity
between the same identities. For P;;—3, we can verify the
angle values in Fig. 5 and Fig. 6 respectively.

As we measure the Rank-1, Rank-20 and Rank-50 accuracy
on TinyFaces using absolute cosine similarity and cosine
similarity as a metric function, cosine similarity produces
false non-matches due to the alignment of the principal
components of the same identity in the opposite direction.
Due to this, even when the identities are the same, the cosine
similarity metric computes the less similarity value for them.
Instead, when we apply absolute cosine similarity, principal
components of the same identity (in probe and gallery sets)
are projected close to each other with a minimum angle
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Fig. 5. Matching of same identities in Rank-1 accuracy using cosine similarity
(50 identities data is shown).
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Fig. 6. Matching of same identities in Rank-1 accuracy using absolute cosine
similarity.

(0° — 37°) between them means more similarity value, which
increases the rank accuracy of our method.

Fig. 7 shows that our model achieves the 39.13% accuracy
at Rank-1, 56.9% accuracy at Rank-20 and 63.0% accuracy
at Rank-50, and There is a large margin in the accuracy
achieved using the absolute cosine similarity (ABSCos) and
cosine similarity metric. We conclude that for tiny faces,
where the classes suffer the problem of lookalike, absolute
cosine similarity separates the classes well where all principal
components lie in the range of 0 < 6 < 90°.

For example, in Fig. 8, it can be observed that using
cosine similarity, the number of false positives for id 33
is ids: 224, 140, 58. In contrast, absolute cosine similarity
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Fig. 7. Cumulative Match Curve(CMC) for the identification accuracy of
different metric functions.

ld 33 224 140 58 33
0.786 0.766 0.763 -0.890
Cosine angle  38.144 39.937 40.232 152.912

Cosine similarity

ld 33 33 224 140 58
Absolute cosine 0,890 0.786 0.766 0.763
similarity

Cosine angle 27.087 38.144 39.937 40.232

Fig. 8. Absolute cosine similarity for diminishing the problem of look alike.

increases the rank of id 33 from Rank-4 to Rank-1 and
pushes down false positives. Ultimately as the number of
false positives decreases, the Rank-1 accuracy of our proposed
system increases.

E. Ablation study on different metric functions

TABLE II
ABLATION STUDY ON METRIC FUNCTIONS WITH SUBSPACE LEARNING
METHODS.

Metric % | Rank-1 | Rank-5 | Rank-10
PCA+ABSCos 39.13 48.53 52.82
PCA+Cosine 22.66 27.93 30.31
Mean+ABSCos 39.09 48.38 52.98
Mean—+Cosine 39.09 48.38 52.98
Mean+Euclidean 32.11 40.92 44.55

Table II depicts that the principal component analysis (PCA)
with absolute cosine similarity (ABSCos) produces better



Rank-1 and Rank-5 identification accuracy than mean embed-
ding with absolute cosine similarity. Rank-10 accuracy using
the mean embedding with cosine or absolute cosine similarity
produces better identification results than PCA with absolute
cosine similarity. Rank-1 identification accuracy is prominent;
hence PCA with absolute cosine similarity produces the best
results in our experimental analysis.

VI. CONCLUSION

Our proposed methodology shows that the model using
the absolute cosine metric produces better results than cosine
similarity. Instead of using the image-to-image matching based
on class labels, we combine all the embeddings of the identity
and generate a unique representation of that identity in the
embedding space using the subspace learning method. Our
proposed methodology is capable enough to resolve the issue
of lookalike and finds the correct match to an extent even
when the faces are tiny (20 x 16), blurred and posed. The
subspace to subspace similarity is computed using the absolute
cosine similarity metric, where subspaces are learnt using
the principal component analysis. In future work, we aim to
develop ensemble-based systems, where models trained on
synthetically generated datasets will be combined to extract
the features from tiny faces having abundant variations to rec-
ognize the person in the unconstrained environment. Variation
of loss functions and synthetic data generation approaches
will also be used to enhance the identification accuracy of
the recognition system.
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